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ABSTRACT

A systematic procedure of modeling a persistent time series is presented. The methodology which is known
as ARFIMA (Autoregressive Fractionally-Integrated Moving Average) modeling is an extended version of Box
Jenkins or ARlMA iterative modeling. It involves three main stages, namely estimation (degree of differencing,
autoregressive and moving-average parameters), diagnostic-checking and forecasting. The data set that was
used in the application was the Philippine Stock Exchange (PSE) oil index daily series which was selected after
an investigation of available economic variables. The use of fractional differencing in capturing long-range
dependence ofPSE in the years oil index 1994, 1993-94 and 1992-94 series was found to be more appropriate
than integral differencing. Persistence in the series was evident in the autocorrelation plots which displayed a
hyperbolic decay pattern. Furthermore, there is a decreasing persistence-degree pattern as the number of years
decreases based on the fractional differencing degree estimates computed by using a modified version of the
Hui-Li algorithm. In the final stage, the three periods were compared and the ARFIMA model fit for the one
year series provided the best set of forecasts.
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1. INTRODUCTION

Many time series analytical approaches focus on the traditional short-term memory
models. The consideration herein is that distant observations are nearly independent.
However, this is not always the case as proven in empirical studies done in the fields of
hydrology and economics. Long-term dependent series display persistence. This is a
characteristic showing correlations between distant observations to be slowly deteriorating
which is uncommon in short-term dependent series. The univariate Box and Jenkins (UB))
ARIMA approach could be generalized in order to model persistent series. The generalization
calls for the estimation of the degree of differencing prior to ARMA fitting. The idea is
called fractional differencing and the by-product model is known as an ARFIMA
(Autoregressive Fractionally-Integrated Moving Average) model.

Modeling persistence through ARIMA approach poses three problems as discussed by
Sowell (1992a). The first one is concerned with estimates of the parameter values. In an
ARMA(p,q) model, the roots of the autoregressive and the moving-average polynomials are
assumed to be outside the unit circle. However, for some applications the estimates are near
the boundary of the unit circle. This implies that asymptotic distributions following the
ARMA(p,q) representation may lead to poor approximations of the sampling distributions.
To model positive dependence, a root of the autoregressive polynomial must approach the
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unit circle. To model negative dependence, a root of the moving-average polynomial must
approach the unit circle.

The second problem in using ARIMA models is that if an AR or MA parameter does
capture the long-run behavior of a series then restrictions are imposed on the short-run
behavior of the series. As a possibility, the long-run behavior is dominating in the series.

The last problem of ARIMA model application is concerned with model selection in
small samples. There is no way to direct the fit of an AR or an MA parameter to the long-run
characteristic of a series because it is being sacrificed just to obtain a better fit ofthe short-run
behavior. F. Sowell mentioned two approaches to avoid these problems. He suggests
reliance on nonparametric estimation and extensive parametric estimation techniques.
However, the nonparametric estimates are too imprecise to give meaningful restrictions
considering the sample sizes of econometric series being studied.

Th~'" consideration of a more general class of parametric models which will be less
susceptible to these problems is needed. Such model is the Autoregressive Fractionally
Integrated Moving Average (ARFIMA) model represented by
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where it will be assumed that d < 0.5 and that the roots of the autoregressive and the moving
average polynomials are outside the unit circle. In the model above, the AR and MA
parameters seek to capture the short-run behavior of the series, while the differencing
parameter seeks to explain long-range dependence.

Hosking (1981), Porter-Hudak (1990) and Beran (1992) characterized persistence or long
term dependence in a series by a hyperbolic decay-pattern of spikes representing the
autocorrelation function values. This pattern displays a much slower decay of spikes than the
known exponential-decay pattern. Figures l(a) and l(b) show the exponential decay pattern
and hyperbolic decay pattern respectively. Beran (1992) pointed out that the two best known
classes of stationary processes with this characteristic are increments of self-similar or
fractional Gaussian Noise processes and fractional ARIMA processes.

Figure la
ACF of AT&T Stock Price (Undifferenccd)
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ARFIMA modeling applications were vastly done in hydrology. The long-term
persistence phenomenon was discussed by Lawrance and Kottegoda (1977) in the riverflow
time series analysis. Self-similarity is a characteristic inherent in this type of series which is a
form of statistical invariance with respect to the change in time scale. Long-term series were
preferred over short-term series in order to reproduce distributions of deficits and durations of
extreme overflows. Most hydrologists believe that long-range dependence is a rule rather •
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than an exception. Hydrologic time series like amount of rainfall, lake levels and riverflows
are known to be persistent series. Such series contain more likely extreme events which must
be treated with caution.

Figure Ib
ACF ofPNB-Mkt 1990 Stock Prices (Undifferenced)
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The discussions provided by Davies and Harte (1987) show that if Xj, ..., Xn denote a
series of observations that are normally distributed and considered to test for long-term
dependence then {Xn} is known as fractional Gaussian noise if cov(Xi,Xj) = e p(i - j)
where p(i) = 0.5 [i + 112H + 0.5 [i - 112H - [i 12H. Ifi is large then p(i) - H (2H-l)1 i 12H-2.

The parameter H, known as the Hurst coefficient, is the measure of the extent of dependence.
If H has a value of 1/2 then it implies independence of observations while 0 < H < 1/2
corresponds to negative dependence and 1/2< H < 1 corresponds to long-term dependence.

In economics, however, the usefulness of ARFIMA modeling was applied only in the
analysis of monetary aggregates and asset returns which are known to be producing persistent
series. A monetary aggregate is a mass of similarly classified economic indicators. The
modeling technique was particularly useful to predict future movements in aggregate
economic activity and to shape monetary policies. The presence of long-memory components
in such series has important implications to the models and paradigms that had been used to
understand trend and behavior. Long-run swings discovered in asset returns may prove
wrong the existing speculations about diversity. Geweke and Porter-Hudak (1983) found out
that fractionally-integrated models provided more reliable out-of-sample forecasts, although
not the best, for the selected U.S. post-war economic time series such as CPI, Food CPI and
WPI. Persistence in U.S. aggregate output (GNP and NNP) was examined by Diebold and
Rudebusch (1989) through estimation of fractionally-integrated ARMA models.

There is a number of other ARFIMA modeling applications. Hui and Li (1988) illustrated
the use of a fractionally-differenced periodic process in the analysis of Hongkong United
Christian Hospital attendance series. A spatial model using fractional differencing in the time
domain was formulated by Haslett and Raftery (1989) in their study of Ireland's wind power
resource. The focus of the study was on the evaluation of the average wind power to be
expected in the long term from a wind turbine at a given new site.

The recent modeling technique will be applied to the Philippine Stock Exchange oil index
(daily figures). The time periods that will be considered are 1992-94, 1993-94 and 1994.
The actual data in the first two weeks of January of 1995 shall ~e used for forecast
comparisons. The study, however, will not venture into explaining volatile conditions and
activities bringing forth accession or recession in the money market or investment world. It
simply encompasses series trend- and behavior-description and model- formulation with test
for optimal forecasting. Existing measures that will prove existence of persistence will not be
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used. Instead, the correlation plot will be examined. Moreover, the endeavor is to exhibit a
methodology of the model-formulation of persistent time series. This methodology, however,
does not totally depart from the usual Box-Jenkins iterative model-building approach. The
only difference is that prior to the identification stage, the differencing parameter estimate is a
fraction.

The organization of this paper is as follows. We present the working data in section 2.
The rudiments of model identification are reviewed in section 3. Estimation is discussed in
section 4 and model selection in section 5. The results and discussions are given in section 6.
Some concluding remarks and recommendations are given in sections 7 and 8, respectively.

2. 1'lHIJE DA1'A

•

This study features the modeling of the Philippine Stock Exchange (PSE) oil index. This •
variable was selected after investigating about 18 blue-chip stocks, commercial and
industrial, mining and composite indices, foreign exchange (dollar to peso) rates and Tvbill
rates. Results of initial processing of the data by using the prepared SAS program through its
~ROC MODEL had shown that the preliminary d-estimate of the oil index seems the lowest.

A stock index represents a central measure of the prices and serves as a reflection of the
price movement of its component stocks. At present, there are five (5) stock indices
identified in the PSE. These are CI or commercial-industrial index, mining index, property
index (the most recent addition), oil index and PHISIX or composite index. Daily figures of
each of the stock indices are listed in newspapers. The PSE has the following formula to
compute for each stock index which is based on traded prices of stocks:

TCLIX YCLIX x
TMCAP

YRMCAP
(1)

where TCLIX is today's closing index, YCLIX is yesterday's closing index, TMCAP is
today's market capitalization and YRMCAP is yesterday's revised market capitalization
adjusted for any capital change in the constituent stocks.

As of January 20, 1995 the following stocks are listed under Oil:

Alcorn Petroleum - A
Basic Petroleum - A
Oriental Petroleum - A
Palawan Oil
Petrofields - B
Seafront Resources Corporation - B
The Philodrill Corporation - A
Trans-Asia

Alcorn Petroleum - B
Basic Petroleum - B
Oriental Petroleum - B
Petrofields - A
Seafront Resources Corporation - A
South China
The Philodrill Corporation - B
Vulcan Industrial

•

3. MODJEJL JIDJEN1'JIlFJICA1'JION

The time series plot is first examined to check for nonstationary tendencies. If the need
arises, proper transformation of the original series is done in order to induce a constant
variance. The produced variance-stabilized series, then, will be used to compute and plot the
estimated autocorrelation coefficients and partial autocorrelation coefficients so as to •
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determine the appropriate degree of differencing. Persistence or long-term dependence in a
series is characterized by a hyperbolic decay-pattern in the autocorrelation plot. This pattern
exhibits a slower dying-out to zero trend of the autocorrelation coefficients than the usual
exponential decay-pattern.

Hosking (1981) pointed out assumptions about real values of differencing parameter (d).
For °< d < 1/2, the process is stationary with long-memory and may be expected to be
useful for modelling long-term persistence. When d = 0, the process becomes a white
noise with zero correlations. If -l/2<d< 0, the process has a short-memory and is
antipersistent characterized by negative autocorrelations and partial autocorrelations which
decay monotonically and hyperbolically to zero.

The partial autocorrelation function is of little use in the identification stage when the
series considered is persistent. This is so because of the complicated form of its plot pattern.
However, Hosking (1981) showed through experimental evidence that for the estimated
partial autocorrelation coefficient (~kk) and k number of lags considered,

d
~kk - - as k ~ 00

k

Thus, d - ~kk • k as k ~ 00.

If evidence of persistence is detected, a new technique called fractional differencing will
be applied. The evidence that is considered in this study is the hyperbolic decay-pattern in the
estimated ACF. It should be noted, however, that there are existing measures or tests of long
range dependence. Some of these include the rescaled range test by Hurst (see Kottegoda,
1977), optimal tests other than rescaled-range test by Davies and Harte (1987) and the
cumulative impulse-response function included in the discussion of Diebold and Rudebusch
(1989).

The estimation procedure that will be applied in this paper is a modified version of the
Hui-Li (1994) algorithm. The algorithm was a modified one since the estimation starts with
an initial d-estimate and the formulation is for one period only. It should be noted that the
original algorithm was formulated for two periods. The fractionally-differenced series
becomes the basis in the computation of the new set of autocorrelation and partial
autocorrelation coefficients which are considered in the determination of the closest fitting
ARMA (Autoregressive Moving Average) model. The final step in the identification stage is
the test for model inclusion of the deterministic trend element.

4. FRACTIONAL DIFFERENCING PARAMETER ESTIMATION

The stationary and variance stabilized series {Xj} will be used to determine the fractional
degree of differencing. Let 2t = (1 - B)d Xt be the fractionally-differenced outcomes for t =
1, 2, ..., n, °< d < 1 and with (1 - B)d as the fractional differencing operator. In the model
building stage, computation of the preliminary fractional differencing parameter will be
carried out. We modify Hui and Li's algorithm (see Hui and Li, 1994) to carry out the
estimation of d. The modification is necessary since only one period is being considered in
this study.

The fractional differencing operator (1 - B)d can be expressed as:
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(2) •
Persistence is evident if 0 < d < 1/2. Li and McLeod (1986) pointed out that the fractional
differencing operator, Vd(B), can be approximated through the binomial expansion:

r d

V
r
d (B) = L( ) (_I)kBk

•

k=O k
(3)

where, according to Hui and Li (1994), the value ofr is such that r ~ 00 as n ~ 00 but
rln is 0(1). With the fixed value ofr, the ARIMA (0, d, 0) can be estimated.

The following equations featuring the forward-shift operator (F) and the backward-shift •
operator (B) where F = B-1 are used in the algorithm:

t = 1,2, ..., n (4)

where {at} are identical, independent and normally-distributed errors with mean 0 and

variance 0'2, 0 < d < 1 and B(Xt) = Xt-I;

t = 1,2, ..., n (5)

where {cd are identical, independent and normally-distributed errors with mean 0 and

variance 0'2, 0 < d < 1 and F(Xt) = Xt+1.
The algorithm has the following steps:

1. Get a preliminary estimate d by minimizing

~ a~ with respect to d.
t=l

2. Using the d in (1), calculate {c.} for t = n-r, n-r-l, ..., 1 using (5).
3. Set {cd = 0 for t = 0, -1, -2, ..., l-r.
4. Backcast {Xj} for t = 0, -1, -2, .... l-r.
5. Calculate {ad for t = 1,2, ..., n using (4).

6. Minimize~ a~ with respect to d.
t=l

An interactive macro program was prepared to determine the fractional differencing
parameter estimate (d). Basically, it has three parts. The first part computes for an initial d
value. This is followed by backcasting. The number of backcasts produced will depend on
the r-value determined using PROC IML ofSAS. In the program, the value ofr is known by
setting a minimum for the (dCk) value like 0.001. The last part is d-final estimation. Here,
the backcasts that were computed are included. The estimate that will be computed through
this program is the d-value that will be used to difference the variance-stabilized series.

Procedure Model or PROC MODEL is the main part of the prepared SAS program. This
procedure included in SASIETS is capable of solving nonlinear systems of equations. For
the designed program, the solution mode used is NEWTON which computes a simultaneous
solution and the iterative minimization method is GAUSS. Newton's method computes
analytic derivatives of the equation errors with respect to the solution variables. Analytic
derivatives are efficiently calculated using exact formulas for computing derivatives instead

•

•

•
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of numerical approximations (SAS/ETS Guide Version 6). For more details see Binsol
(1995).

5. ARMA Model Selection

The estimated ACF and PACF of the fractionally-differenced series are compared with
theoretical ACF's and PACF's in order to determine the initial model to be fitted. The PROC
ARIMA in SAS/ETS is used to produce the correlation plots. Three major types of processes
are considered. These are the autoregressive (AR), moving-average (MA) and autoregressive
moving average (ARMA) processes. In practice, the tentative model chosen should be
parsimonious. That is, it must contain the smallest number of parameters to be estimated.
This case is true for short-term dependent or anti-persistent series. There may be a difference
when long-term dependent series is considered. Geweke and Porter-Hudak (1983) pointed
out that a non-parsimonious model may better represent long-memory persistence.

The non-seasonal ~IMA (p, d, q) model has the following form:

~ (B) V d (B) X = 8 (B) a
p t q t

(6)

•

where {at} are identical, independent and normally-distributed errors with mean 0 and
variance 0'2, ~pCB) is the autoregressive polynomial operator and 8q{B) is the moving-average
polynomial operator.

After fractionally-differencing the variance-stabilized series, the mean of the new series is
either zero or nonzero. A model set with the differenced series having a nonzero mean has a
constant term which is called the deterministic trend element. This value when included in
the model brings about a certain shift in the forecast. The nonseasonal ARFIMA (p,d,q)
model with the deterministic trend element (00) has this form:

~ (B) V d (B) x = 8 + 8 (B) a
p I 0 q t

(7)

•

•

A preliminary statistical test using t-test is performed to find out if 80 is zero based on the
mean of {Zj} and its approximate standard error. Box and Jenkins exhibited the approximate
standard error for the mean of {Zf} for some ARMA processes. If 80 is significant then it
must be included in the model.

The parameter estimates are then checked for possible inclusion in the model.
Specifically, the coefficients will be examined if they meet the stationarity or invertibility
conditions, high-quality criteria, being uncorrelated from each other and being off near
redundancy. Finally, the adequacy ofthe model set is tested in terms of forecast errors using
the root mean square error (RMSE), the mean absolute percent error (MAPE) and the mean
square prediction error (MSPE).

After the initial model selection and parameter estimation, the next and final stage in the
model formulation is the check whether the residuals follow a white noise behavior. The
residuals are expected to be uncorrelated with zero mean and a constant variance. If these
conditions fail then model-reformulation is necessary which means going back to the
identification stage. A Pormanteau test for lack of fit as featured in SAS and explained by
Wei is used to determine model adequacy. This statistic approximately follows a chi-square
distribution. It will be used to test the null hypothesis that all the errors are significantly
different from zero.

When a set of apt models is at hand, other model selection criteria based on the residuals
are used to select the best model. These are the Akaike-Information Criterion (AlC) and the
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Schwartz-Bayesian Criterion (SBC). The model with the minimum value for these criteria is
considered as the best fitting model for the series. •

6. RlESUIL'IS AND DISCUSSION

6.1 Fractional Differencing Parameter Estlmation

In order to determine if there is a change in the persistence pattern of the Philippine
Stock Exchange oil index, three periods were considered. Daily data were gathered from
leading newspapers (Manila Standard, The Philippine Daily Inquirer and The Philippine Star)
for years 1992-94. The analysis periods used were 1994, 1993-94 and 1992-94.

lFigure2
Oil Index Series 1992-1994
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ACF of Oil Index (Log) 1994 Series
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As can be observed from Figure 2, the trend of the daily figures of oil index 1994, oil
index 1993-94 and oil index 1992-94 generally shows a downward movement. Notice that
fluctuations, variations or periodicities that are contained in the data are not regular.
Furthermore, the plots indicate that the series mean changes over time and that the variance
is unstable. The natural log transformation was used to stabilize the variance and nonseasonal
differencing is required to have a constant mean. The sample ACF's (autocorrelation
functions) exhibit a slow decay of positive values which is more reminiscent of a fractional or
hyperbolic decay (refer to Figures 3(a), 3(b) and 3(c».
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Figure 3b
ACF of Oil Index (Log) 1993-94 Series
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Figure 3c
ACF of Oil Index (Log) 1992-94 Series
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Crucial to the estimation of the fractional diffcrencing parameter (d) is the determination
of an appropriate r-value in the binomial expansion

The weights (dCk), k =O,...,r are almost 0 for large k. The output in Table 1 shows that
for specific values of d (0.01 and 0.99 and 0.1 to 0.9 with increment of 0.1) and setting !(
dCk )1 < 0.001, r is highest at 73 when d = 0.2. It could have been larger if the d-increment
was made smaller. The result, r = 73, implies that 73 observations are needed just to
estimate d. Denoting by no the remaining number of observations (n - r), for oil index
1994, no = 179, for oil index 1993-94, no = 428 and for oil index 1992-94, no = 673. Further
analysis of results in Table 1 suggests that the highest value of r, at any d-increment, occurs
between d =0.1 and d =0.3.

Although the optimization procedure is not the best, it serves as a beginning of an
exploration. Through the application of the interactive macro program the values of d are
determined. The estimation procedure is maximum likelihood estimation as patterned after
Hui-Li using the default set in PROC MODEL of SAS like Newton's method as the solution
mode, the Gaussian iterative procedure and convergence criterion of 0.001. After processing,
d = 0.86 was obtained for oil index 1994, d = 0.92 for oil index 1993-94 and d = 0.95 for oil
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index 1992-94. The three d-values show a decreasing trend as the number of observations
decreases. This could be an indication that the degree of persistence decreases as the number
of years decreases. Furthermore, the values are greater than 0.5 which, as discussed in Sowell
(1992a), suggest less persistence.

'fable 1
Values of dCk for Various Combinations of d and r

I ! ! [d - Values I , I1 I

r 0.01 0.1 0.2 0.3
,

0.4 i 0.5 0.6 I 0.7 I 0.8 0.9 0.99I I

0.100~0000 1
1 0.01000 0.30000 0.40000 0.50000 0.60000 0.70000 0.80000 0.90000 0.99000

2 -0.00495 -0.04500 -0.08000 -0.01500 -0.12000 i -0.12500 -0.12000 -0.10500 -0.08000 ~0.04500 -0.00495

3 0.00328 0.02850 O. 0.06400 i 0.06250 0.05600 I 0.04550 0.03200 0.=00167
4 -0.00245 -0.02066 -0.03360 -0.01016 -0.04160 -0.03906 -0.03360 -0.02616 -0.01760 -0. -0.00084

5 0.00196 0.01 0.02554 0.02995 0.02995 0.02734 0.02285 0.01727 0.01126 O.~
6 -0.00163 -0.01316 -0.02043 -0.023281-0.02296 -0.02051 -0.01676 -0.01237 -0.00788 -0.

7 0.00139 0.00109 0.01693 0.01896 0.01837 1 0.01611 0.01293 0.00937 0.00586 0.00267

8 -0.00122 -0.00957 -0.01439~6, -0.01309 -0.01034 1-0.00738 -0.004 -0.00204

9 0.00108 0.00840 0.01247 0.013 0 I 0.01091 0.00850 0.00598 0.003 .00161

10 -0.00097 -0.00748 -0.01097 -0.011~-0.01101; -0.00927 -0.007141-0.004971-0.00298 -0.00130

20 0.00348 -0.00475 0.0047 0411 0.00322 -0.00230 I 0.00148

30 -0.00222 -0.00291 -0.00280 -0.00232! -0.00174 -0.00119,
40 -0.00162 -0.00206 -0.00192 -0.001551 -0.00113

50 -0.00127 -0.00158 -0.00144 -0.001131

60 -0.00104 -0.00127 -0.00113

65 0.001149 0.00101941 I
70 -0.001051 -1

- .• .-f--._-
73 0.0009994

6.2 AlRMA Model for tine Fracttonally-Dtfferenced Series

In order to determine the ARMA model to be fitted in each of the three series, reference
to theoretical ACFs, IACFs and PACFs was considered. However, the/patterns displayed in

ij .

the sample ACFs, IACFs and PACFs are atypical. Hence, AR, MA and ARMA models of
/'

order 1 were all tried to determine the best representation. Although it was discovered that
the ARFIMA(O,d,O) model or the fractional white noise model of each of the three series has
statistically independent residuals, the consideration of ARMA fitting proved to be important
due to the findings in Table 2.

For all the three series, the AR(l) model appears to be appropriate because of higher
absolute t-values and fairly good coefficients. It should be noted that all the coefficients are
of high quality since their absolute values are less than 1 and the corresponding t-values are
significant at most at 0.10 level. In Table 3 the tentative ARFIMA(P,d,q) models selected are
presented. It is noticeable that the AR coefficient in the third series is small. One might
suggest the appropriateness of the fractional white noise model. For this case, what accounts.
for is the fact that the residuals are white noise at ARFIMA(O,d,O) fit. However, this small
AR coefficient is significant as displayed in Table 5.

•

•

•

•



The Philippine Statistician, 1995-1996

Table 2
Parameter Estimates for ARFIMA and ARIMA Models

Oil Index 1994, 1993-1994, 1992-94 (Log Series)

43

•

Model Oil Log 1994 Series Oil Log 1993-94 Series Oil Log 1992-94 Series
d = 0.86 d =0.92 d =0.95

AR1 MAl ARI MAl AR1 MAl
ARFIMA(I,d,O) -0.13481 -0.1058 -0.08015

(-1.81) (-2.09) (-2.08)
ARFIMA(O,d,l) 0.11824 0.09037 0.07448

(1.59) (1.87) (1.94)
ARFIMA( l.d, 1) -0.39109 -0.52217 -0.38002 -0.27921 -0.33695 -0.4162

(-0.94) (-1.35) (-0.96) (-0.68) (-0.86) (-1.11)
ARIMA(I,I,O) -0.24673 -0.17339 -0.13098

(-3.39) (-3.64) (-3.42)
ARIMA(O,I,I) 0.24347 0.16768 0.12901

(3.35) (3.51) (3.37)
ARIMA(I,I,I) -0.3092 -0.06676 -0.22427 -0.05246 -0.05788 -0.18869

(-1.07) (-0.22) (-0.83) (-0.19) (-0.20) (-0.66)
• Values In parenthesis correspond to t-values.

Measures such as AIC (Akaike Information Criterion) and SBC (Schwartz-Bayesian
Criterion) were used to determine the model that best represents the fractionally-differenced
series. The AIC and SBC results for the oil index series are in Table 4. The findings reveal
that the selected model for each series is not the best if the criteria are used though these
criteria do not agree. AIC selects the corresponding AR(!) representation of the fractionally
differenced series and SBC selects the corresponding fractional white noise model. Both
models have no constant trend. This is a crucial situation because both models show promise.

Table 3
ARFIMA and ARIMA Models for Oil Index Series

Series ARFIMA(p,d,q) . ARIMA(p,d,q)

Oil Index 1994 (1+0.1384IB)O.86Xt=at (1+0.24673B)( I-B)Xt=at

Oil Index 1993-94 (1+0.10058B)o.92Xt=at (1+0.17339B)( \·R)Xt=at

Oil Index 1992-94 (1+0.08015B)o.86Xt=at (1+0.13098B)( \-B)Xt=at

In order to determine the better model, each must be tested in terms of forecasting ability.
• However, if consideration is modeling the short-run behavior-part of the persistent series then

the fractional white noise model may not very well fit this possibility. With the available
measures, the better model for the oil index series could be found. Such measures include the
adjusted root mean-squared error (RMSE) and mean absolute percent error (MAPE).

From the results in Table 5 it is noticeable that there is no clear boundary between the two
models. MAPE values are lower for the fractional white noise model while RMSE's are
lower for the AR(!) model. Since both models seem appropriate if based on the measures, a
choice of one of them maybe suggestive. The choice is still the AR(!) representation. The
selection is but proper for succeeding comparisons with their corresponding ARIMA(p,! ,q)
counterpart which at an initial stage of the investigation is AR(!) also. This will permit a
clearer comparison and easier interpretation of ARFIMA and ARIMA models since for both
sets, the AR parameter is the only one estimated after considering the differencing degree.

•



For further diagnostic checks, the residual autocorrelations were examined. Based on the
Ljung-BOX statistic computed using PROC ARIMA of SAS, the residuals are white noise
and therefore, the oil index series models are apt.
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6.3 Comparison of ARlIMA and A.RJF.D:MA Models

For comparison, in both ARFIMA and ARIMA modeling no (number of actual figures
less r) observations for each oil index series are considered. It is noteworthy to mention that
the fractionally-differenced series has a more stationary mean and variance than the
corresponding first-differenced series.

For the fractionally-differenced series, AR(l) model was selected for the three oil index
series. In order to test the ability of these fractionally-differenced models as compared with
conventional models, it is but wise to consider applications of ARIMA modeling. •

The iterative approach starts with model identification then followed by estimation of
ARMA model parameters, evaluation of parameter estimates, diagnostic-checking and lastly,
forecasting. The nonstationary tendencies which are evident in the natural log series plot
suggest nonseasonal differencing. First-differencing was applied on each of the oil index
series. For the ACF, the same pattern of having a spike in lag 1 then cutting off to zero was
found. Again, AR, MA and ARMA models of order 1 were all fitted on the first-differenced
series. Table 3 displays each model coefficients with the corresponding t-value. Based on
these, it turns out that the AR(l) model is the best representation for the three oil index series.

Table 4
AIC, SBC of ARFIMA and ARIMA Models for Oil Index Series

Model Oil Log 1994 Series Oil Log 1993-94 Series Oil Log 1992-94 Series

d = 0.86 d = 0.92 d = 0.95

AIC SBC AIC SBC AIC SBC

ARFIMA(O,d,O) -613.084 -613.084 -1677.278 -1677.278 -2731.274 -2731.274

ARFIMA(1,d,0) -614.358 -611.170 -1679.624 -1675.565 -2733.608 -2729.096

ARFIMA(0,d,1) -613.934 -610.746 -1679.180 -1675.121 -2733.297 -2728.786

ARFIMA(1,d,1) -613.254 -606.879 -1678.326 -1670.208 -2732.364 -2723.340

ARIMA(O,1,0) -602.657 -602.657 -1668.115 -1668.115 -2726.778 -2726.778

ARIMA(I,l,O) -611.884 -608.(196 -1679.168 -1675.109 -2736.415 -2731.903

ARIMA(O,1,1) -611.456 -608.268 -1678.650 -1674.591 -2736.186 -2731.674

ARIMA(1,1,1) -609.913 -603.538 -1677.204 -1669.444 -2734.444 -2725.420

The selection of AR(1) representation for the first-differenced oil index series proved to
be promising because AIC and SBC are lowest for these models. The findings are in Table 4.
These are supported by a white noise pattern in the corresponding set of residual
autocorrelations. It should be noted that after AR(1) fitting of the first-differenced
observations, the residuals became white noise.

After choosing the best set of ARFIMA and ARIMA model representations for the oil
index series, it is proper to decide the better set between them. The first check for model
adequacy is through AIC and SBC measures. The criteria are computed for the two sets and

•
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are displayed in Table 4. Both AIC and SBC are lower for the ARFIMA(I,d,O) model
representations of oil index 1994 and 1993-94 series. While for oil index 1992-94 series, the
better choice is ARIMA(I,l,O).

Table 5
RMSE, MAPE of ARFIMA(O,d,O), ARFIMA(1,d,O) and ARIMA(1,1,O) Models

Model Oil Log 1994 Series Oil Log 1993-94 Series Oil Log 1992-94 Series

d = 0.86 d = 0.92 d= 0.95

RMSE MAPE RMSE MAPE RMSE MAPE

AFlFIMA(O,d,O) 0.001890 1.175468 0.001151 0.872033 0.001008 0.826097

AFlFIMA(I,d,O) 0.001916 1.165018 0.001165 0.869708 0.001013 0.822033

ARIMA(1,1,0) 0.001918 1.203441 0.001152 0.884250 0.01003 0.830849

~

The next criteria for the selection of the better model is through forecasting ability. The
choice is made through comparison of forecast errors. This is accomplished through
computation of the respective RMSE, and MAPE for each model. In Table 5, comparative
results of the measures are given. Based on the RMSE and MAPE, the ARFIMA(I,d,O)
model representations of the oil index series outperform the ARIMA(1,I,O) model
representations. The findings are very well-supported through comparison of the actual and
fitted values.

The final measure to be considered in determining the model with a better quality of fit is
the mean-squared prediction error (MSPE). Its computation depends on the out-of-sample
forecasts compared with the additional ten actual data from January 2-16, 1995 trading days
(see Fig. 4). Prior to its computation is the presentation of the plots featuring the actual
values and the one-step-ahead forecasts. For oil index 1994 (log) series, ARFIMA(I,O.86,O)
model has six out of ten better forecasts. For oil index 1993-94 (log) series,
ARFIMA(1,O.92,O) model outperformed ARIMA(I,I,O) model with seven out of ten better
forecasts. While for oil index 1992-94 (log) series, ARFIMA( I ,0.95,0) model forecasted
better seven out often indices.

While it is discovered that ARFIMA models perform better than ARIMA models in
modelling persistence of the three oil index series, there is one best ARFIMA representation.
Figure 4 provides the information. Considering the three comparative time-periods and if
time factor is included in the analysis, the model fit for the one-year oil index data, that is,
ARFIMA(I,O.86,O) provides the best set of forecasts. This suggests that the more recent
available data of oil index will explain better its present or future behavior. At this stage, it
remains to be discovered as a generalization if longer time periods are needed. As another
point of discussion, the selected series may not have represented adequately a persistent series
based on the estimates that were computed but the use of fractional differencing proved to be
more advantageous than integral differencing based on the findings.
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Figure 4
Actual Values and One-Step Ahead Forecasts for the ARFIMA Models
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This study serves as an evidence of the usefulness of autoregressive, fractionally
integrated and moving-average (ARFIMA) models in capturing the necessary properties of
the Philippine Stock Exchange oil index series. The usefulness holds true for the 1994, 1993
94 and 1992-94 daily figures that were covered. More illustrative findings and
generalizations regarding the behavior pattern of the oil index could have been made possible
if longer periods of time were considered. Nevertheless, this undertaking had attained its
purpose of showing that fractional differencing is a better technique to apply than integral
differencing in removing long-term persistence. The use of h statistic like R/S analysis in
order to determine the existence of persistence phenomenon was not considered. Instead,
visual means were used. This is through the inspection of the autocorrelation plots. The
hyperbolic pattern in the ACFs of the oil index series, just like in most empirical studies, is an
indication of its existence. Due to this. fractional differencing is the more appropriate
technique to achieve stationarity.

As regards the estimation procedure which was designed in the context of maximum
likelihood estimation, the values that were determined are promising. The differencing
parameter estimates obtained were 0.86, 0.92 and 0.95 for oil index 1994, 1993-94 and 1992
94 series, respectively. As a realization, these values do not agree with the assumed values of
o to 0.5 of proponents like Beran, Diebold, Porter-Hudak and Sowell for long-term
persistence to exist. In spite of that, the conjecture of persistence existence in the oil index
series remains. The optimization procedure of estimating the nonseasonal fractional
differencing parameter is only one of the many possible means that could be explored. It may
not be considered as the best, but for the time being, it is suggestive. Certainly, the
methodology which was patterned after Hui and Li (1994) has provided a system which is not
very complicated.

A systematic iterative procedure of modeling a persistent time series had been formulated.
This was strictly followed in modeling the three oil index series. As mentioned in the data
methodology and described in Hosking(1981), it is a generalized version of ARIMA iterative
modeling. The first step in the procedure is the estimation of the differencing parameter of the
variance-stabilized series. This is followed by the selection of the tentative autoregressive
and moving-average (ARMA) representation and evaluation of the parameter estimates. The
next step is diagnostic checking to determine the adequacy of the fitted model. If there is lack
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of fit then another ARMA model is selected. Finally, the selected model is tested for efficient
forecasting.

Following the above iterative procedure, it was found out that ARFIMA1,d,0) with no
deterministic trend best fitted the behavior pattern of the oil index series. Specifically, oil
index 1994 (log) series admitted ARFIMA(1,0.86,0) representation. Oil index 1993-94 (log)
series admitted ARFIMA(1,0.92,0) and oil index 1992-94 (log) series was represented by
ARFIMA(1,0.95,0). These results were arrived at after comparisons of one-step-ahead
forecasts with actual values, model selection criteria such as AIC and SBC and realization of
the presence of reasonably clear white noise pattern in the residual ACF's.

8. RECOMMENDATIONS

Long memory models with two classifications - fractional Gaussian noise and
fractionally-differenced models - are areas in time series analysis where research is in its
infancy. These classes of models are needed to refine the conventional modeling approaches
so as to increase precision in terms of modeling or capturing the trend or behavior in a series.
This study serves only as an introduction of the usefulness of fractionally-differenced models.

The first possible area of consideration is the measure of persistence. Persistence or long
run behavior is a qualifying characteristic before possible application of a long-memory
model. Qualified as robust techniques - R/S analysis and cumulative response function 
were not yet generalized as applicable to series that have the tendency to exhibit short-run
behavior.

The second possible exploration is on fractional differencing estimation. Areas that might
be covered are estimations considering conditional least squares and unconditional least
squares and still, maximum likelihood estimation. The study just presented a version of
maximum likelihood estimation which could be improved.

The Hui-Li algorithm had been suggestive in terms of determining a d-estimate but it
could be further improved if the system of fixing r depending on the sample size is
incorporated. A so-designed procedure when formulated will increase the level of its
precision in terms of estimating the fractional differencing parameter. As a realization based
on the trials conducted for this study,. the identification of an appropriate r-value may be
done by trial and error assignment.

In addition to fractional differencing parameter estimation, a unified program consisting
of ARMA model parameter estimations, diagnostic-checks and forecasting as in PROC
ARIMA must be constructed as if the SAS procedure is extended. In this study, a program
was designed for each step.

Most of the studies done in this area made use of the spectrum density approach. That is
why the available estimation procedures are in line with this. The recommendation is to
further strengthen studies on time series domain. Furthermore, seasonal variations are
common to monthly, quarterly and annual data. The application of a fractionally-differenced
model that is fitting to this kind of data may be explored.
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